Atoms and Nuclei

Impact Parameter, θ = angle of scattering

$$b = \frac{1}{4\pi\epsilon_o} \frac{ze^2 \cot\left(\frac{\theta}{2}\right)}{E_K}$$

Bohr's Atomic Orbital

Electrons revolve in a stable orbit, forming stationary wave

Angular momentum of the electron is quantised.

Photon or energy is emitted due to transition of electron form higher to stable orbit

Angular Momentum

$$L=n\frac{h}{2\pi}$$

Velocity
$$v = 2.2 \times 10^6 \frac{Z}{n}$$

Radius

$$r = 0.53 \frac{n^2}{Z}$$

Frequency

$$f = \frac{2}{3} \times 10^{16} \frac{Z^2}{n^3}$$

Kinetic Energy

$$E_k = \frac{13.6Z^2}{n^2}$$

K.E:P.E:T.E=1:2:-1

de-Broglie's Explanations of **Bohr's Second Postulate**

According to de-Broglie, a stationary orbit is that which contains an integral number of de-Broglie waves associated withrevolving electrons.

For electron revolving in n^{th} orbit of radius r_n

$$2\pi r_n = n\lambda = \frac{nh}{mv_n}$$
$$mv_n r_n = \frac{nh}{2\pi}$$

88

Emission Spectrum of Hydrogen Atom

$$v = \frac{1}{\lambda} = R_H \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right] \times Z^2$$

 $n_1 \& n_2 = energy levels$ of transitions $R_H = Rydberg Cosntant$ Z = atomic number

Number of Spectrum lines

$$\frac{(n_2-n_1)(n_2-n_1+1)}{2}$$

Spectrum Lines of Hydrogen atom

Series	n ₁	n ₂	Spectral Region
Lyman	1	2,3	UV
Balmer	2	3,4	Visible
Paschen	3	4,5	IR
Brackett	4	5,6	IR
Pfund	5	6,7	IR

Nuclei

Radius of nucleus	$R = R_0 A^{1/3}$ $R_0 = 1.1 \times 10^{-15} \text{m}$				
$r_n = n^2 r_1$	Relation of radius of nth orbit with 1st orbit				
Rest Mass Energy	$E=m_0c^2$				
	$\Delta M = \left[Zm_p + (A - Z)m_n \right] - M$				
Mass Defect	The difference between the sum of masses of all nucleons (M) and mass of the nucleus (m) is called mass defect				
Nuclear Binding Energy	$E_b = \Delta M c^2$				

Radioactivity						
Rate of Disintigration where, λ is the decay constant			$-\frac{dN}{dt} = \lambda N$			
Number of Nuclei present Undecayed at any instant			$N_t = N_0 e^{-\lambda t}$			
Half-life of a Radioactive Element			$T_{1/2} = \frac{0.693}{\lambda}$			
Number of Nuclie after n half-life			$N = \frac{N_0}{2^n}$			
Equivalent Half-life for two simultaneous Decay			$t_{1/2} = \frac{t_1 t_2}{t_1 + t_2}$			
Property	α-particle	β-1	particle	y-rays		
Nature	Helium nucleus	Fast moving electrons		EM Waves		
Charge	+2e	-е		Zero		
Rest Mass	$6.67 \times 10^{-27} \text{ kg}$	$9.1 \times 10^{-31} \text{ kg}$		Zero		
Speed	1.4×10^{7} to 2.2×10^{7} ms ⁻¹	1 to 99% of c =3 × 10 ⁸ ms ⁻¹		$3 \times 10^8 \text{ms}^{-1}$		
lonising Power	104	10 ²		1		
Penetrating Power	1	10 ²		104		

